

NUCLEAR MEDICINE RADIOLOGY UPDATE FOR THE PRIMARY CARE PHYSICIAN

October 29, 2022 Dr. Chris McIntosh, FRCPC

Disclosures

Presenter Disclosure

Chris McIntosh Partner with MIC Medical Imaging

Disclosure of Financial Support

This presentation has received no financial support from any organization. This presentation has received in-kind support from MIC Medical Imaging in the form of logistical support

Objectives

- 1. Recognize the limitations of basic nuclear medicine tests
- 2. List different indications for assessing bone mineral density
- 3. Describe the radiation risks for patients undergoing nuclear medicine tests

Outline

Principles of nuclear medicine

Bone Mineral Densitometry

Radiation safety

Nuc Med

Radiopharmaceutical: Internal source

- Injected
- Swallowed
- Inhaled

Images physiology

Two types of radioactive decay that are imaged in different ways

Gamma camera

- Single photon
 - Planar imaging
 - Dynamic
 - SPECT

Gamma camera: Planar images of a bone scan

Gamma camera:

Whole-body bone scan

Gamma camera:

SPECT

Single photon emission commuted tomography

Gamma camera: SPECT

Axial

Coronal

Gamma camera: SPECT/CT

СТ

Fused SPECT/CT

PET camera

- Two simultaneous photons
- Coincident detection (180°)
- Better Sn and Sp
- Full ring of detectors (\$\$\$)

FUSION PETAC - CT

Change the radioisotope, change the scan

^{99m}Tc-MIBI

^{99m}Tc-MAG3

¹²³I-MIBG

^{99m}Tc-MDP

^{99m}Tc-Sulfur Colloid

Types of NM studies (commonly performed in Edmonton)

Endo: thyroid pertechnetate, I-123, I-131, parathyroid MIBI, neuroendocrine tumor Neuro: brain perf, dementia, seizure, CSF flow/VP shunts

> Pulm: V/Q scan, quantitative perfusion

Cardio: MIBI, Rb-82, viability, MUGA, R->L shunts

Onco: FDG, F-DOPA, DOTATATE, PSMA

GI: RBC bleed, HIDA, Meckel's, gastric emptying, Therasphere

Renal: MAG3, renal cortical, GFR

MSK: bone scan, WBC scan, Ga-67, NM arthrogram, BMD

Limitations

- Not a first line investigation
- Less available for emergencies (banker's hours)
- Certain tests/tracers have limited availability
- Targeted: better for specific questions
- Slow acquisitions. May need multiple time points or different days
- Radiation dose (?) more on this later

Outline

Principles of nuclear medicine

• Brief discussion on bone scans

Bone Mineral Densitometry

Radiation safety

Common indications

- 1) Occult fracture/stress fracture
- 2) Pain generator
- 3) Osteomyelitis
- 4) Loose prosthesis
- 5) Neoplastic disease
- 6) Arthritis
- 7) Avascular necrosis
- 8) Complex regional pain syndrome

Tibial stress fracture

R

Sacral insufficiency fracture Metastasis

CRPS

Fracture assessment

X-ray occult scaphoid fracture

TABLE 8-1	Time after Fracture at which Bone Scan Becomes Abnormal				
	PERCENTAGE ABNORMAL				
FRACTURE	Patients <65 yr	All Patients			
1 day	95	80			
3 day	100	95			
1 wk	100	98			

Mettler; Essentials of Nuclear Medicine Imaging 6th Ed.

Example: L foot pain, query occult fracture

Example: L foot pain, query occult fracture

Bone scan VS CT

- In hospital/ER, CT can be performed immediately, while bone scan may be 1-2 day delay. CT has shorter acquisition time
- Outpt setting, bone scan typically has a shorter waiting list (a few days). Longer acquisition time
- Bone scan will routinely do whole-body images for patients >50yo, as an additional screen for bone abnormality
- Most bone scans will be done as SPECT/CT, so higher Sn and Sp than bone scan or CT alone.

Bone scan VS MRI

- Bone scan shorter wait list
- Whole-body assessment
- No concern about MRI contraindications (metal, pacemaker, etc)
- Bone scan only has uptake in BONE
- Poor assessment of ligaments/tendons, menisci, soft tissues, and radiculopathy
- Limited ability to characterize bone tumors

Outline

Principles of nuclear medicine

Bone Mineral Densitometry

Radiation safety

Bone Mineral Densiometry (BMD)

(dual energy x-ray absorptiometry DEXA)

Ostéoporose Canada Osteoporosis.Ca

BMD: Principles

BMD: Principles

BMD: Principles

In the Rotterdam study; the hip fracture risk at a given BMD is the same for men and women

BMD: Indications for testing

 Table 1: Indications for measuring bone mineral density

Older adults (age \geq 50 yr)	Younger adults (age < 50 yr)
Age \geq 65 yr (both women and men)	Fragility fracture
Clinical risk factors for fracture (menopausal women, men age 50–64 yr)	Prolonged use of glucocorticoids*
Fragility fracture after age 40 yr	Use of other high-risk medications†
Prolonged use of glucocorticoids*	Hypogonadism or premature menopause (age < 45 yr)
Use of other high-risk medications†	Malabsorption syndrome
Parental hip fracture	Primary hyperparathyroidism
Vertebral fracture or osteopenia identified on radiography	Other disorders strongly associated with rapid bone loss and/or fracture
Current smoking	
High alcohol intake	
Low body weight (< 60 kg) or major weight loss (> 10% of body weight at age 25 yr)	
Rheumatoid arthritis	
Other disorders strongly associated with osteoporosis	

*At least three months cumulative therapy in the previous year at a prednisone-equivalent dose \geq 7.5 mg daily. †For example, aromatase inhibitors or androgen deprivation therapy.

2010 Canadian Osteoporosis Clinical Practice Guidelines, CMAJ 2010; 182 (17) 1864-1873

BMD: Technique

In densitometry, X-rays need to pass through 2 types of material:

- Bone
- Not bone

Calculate BMD

MIC Terra Losa 9566 - 170 Street Edmonton, Alberta T5T 5R5

Patient Information:

Name:	
Patient ID:	
Identifier 2:	
Postal Code:	
Sex:	Female
Ethnicity:	White
Height:	157.6 cm
Weight:	66.2 kg
DOB:	
Age:	71
Menopause Age:	56
Referring Physician:	

can Information:

Scan Date:	January 22, 2021 - B0122210
Scan Type:	a Lumbar Spine
Analysis Date:	01/22/2021 08:53
Analysis Protocol:	Spine
Report Date:	01/22/2021 09:03
Institution:	MIC Terra Losa
Operator:	sj/tw
Model:	Discovery W (S/N85812)
Comment:	
Software version:	13.6.0.2

esults Summary:

Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	Z-score	AM (Age Matched)
L1	13.34	13.21	0.990	0.0	100	2.0	128
L2	13.47	13.42	0.996	-0.3	97	1.9	126
L3	15.23	16.01	1.051	-0.3	97	2.0	126
L4	17.61	20.32	1.154	0.8	109	3.2	144
Total	59.66	62.96	1.055	0.1	101	2.3	131

Total BMD CV 1.0%, ACF = 1.034, BCF = 0.998, TH = 7.629

Results History: L1-L4

Scan Date	Age	BMD	T-score	BMD Change vs Baseline	BMD Change vs Previous
01/22/2021	71	1.055	0.1	2.4%*	2.4%*
08/22/2017	68	1.031	-0.1		

* Significant at 95% confidence. LSC is 0.022 g/cm² or 0.022 g/cm² for different scan types.

Results Summary:

Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	Z-score	AM (Age Matched)
Neck	5.47	3.93	0.718	-1.2	85	0.7	112
Troch	10.43	7.82	0.750	0.5	107	1.9	133
Inter	22.27	24.09	1.082	-0.1	98	1.2	122
Total	38.17	35.84	0.939	0.0	100	1.6	126
Ward's	1.17	0.51	0.437	-2.5	60	0.1	103

Total BMD CV 1.0%, ACF = 1.034, BCF = 0.998, TH = 5.702

Results History:

Scan Date	Age	BMD	T-score	BMD Change vs Baseline	BMD Change vs Previous
01/22/2021	71	0.939	0.0	-1.3%	-1.3%
08/22/2017	68	0.952	0.1		

* Significant at 95% confidence. LSC is 0.027 g/cm² or 0.027 g/cm² for different scan types.

T-score is derived from comparing an individuals BMD with the mean value for young normals, expressed as the difference in standard deviation

	T-score
Normal	Equal to -1.0 or higher
Low Bone Mass (Osteopenia)	Between -1.0 and -2.5
Osteoporosis	Equal to -2.5 or lower
Severe Osteoporosis	Equal to -2.5 or lower with fracture

BMD: Risk calculation

CAROC (canadian Association of Radiologists – Osteoporosis Canada)

- Gender
- Age
- Femoral neck T-score

Modifiers

- Fragility fracture risk
- Prolonged steroid use

MEN

osteoporosis.ca

WOMEN

BMD: Risk calculation

Home	Calculation Tool	Paper Charts	FAQ	References	English
alculation To	ol		_		
ease answer the question Country: Canada	ns below to calculate t	he ten year probability of f	racture with BMD. About the risk fact	ors	*
Questionnaire: 1. Age (between 40 and 90 yea Age: Date of Birth Y: 2. Sex	rs) or Date of Birth : M: D: Male Female	 Secondary osteoporosis Alcohol 3 or more units/d Femoral neck BMD (g/cm Select BMD • 	● No	s s	Weight Conversion Pounds • kg Convert
. Weight (kg) . Height (cm) . Previous Fracture i. Parent Fractured Hip	 No Yes No Yes 	Clear	alculate		Height Conversion Inches Convert
⁷ . Current Smoking 8. Glucocorticoids 9. Rheumatoid arthritis	 No Yes No Yes No Yes 				00870161 Individuals with fracture risk assessed since 1st June 201

FRAX is an alternative validated risk calculation tool

BMD: Treatment concepts

LOW RISK

- <10% 10-year absolute fracture risk
- Lifestyle, nutrition

MODERATE

- 10-20%
- Lifestyle, nutrition, +/- drug therapy

HIGH

- >20%
- Lifestyle, nutrition, drug therapy

Follow-up interval is guided by:

- Expected rate of change
- Precision of the DEXA machine (f/u on the same machine)
- Provincial imposed minimum follow-up times

A stable or increasing BMD is an acceptable response to drugs or lifestyle/nutrition

Change in density does not change risk category

Outline

Principles of nuclear medicine

Bone Mineral Densitometry

Radiation safety

Typical Dose Estimates

Every day activity	Radiation dose (mSv)	
ating 1 banana	0.0001	
Smoking 20 cigarettes	0.001	
Sleeping next to someone for 1 year	0.02	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.
light from Washington DC to LA	0.05	K.J
Simply existing for 1 year radiation in your own body)	0.39	
Annual exposure from radon gas	1.3	
Annual exposure (natural) Edmonton	2.4	www.discovermi.org
Annual dose limit nuclear energy worker	50 http://hps.c https://nu (100/5yr)	org/documents/background_radiation_fact_sheet.pdf aclearsafety.gc.ca/eng/resources/fact-sheets/natural- background-radiation.cfm?pedisable=true

Typical Dose Estimates

Annual Medical Dose (National Council on Radiation Protection)

NCRP Report 93 (1987)

- US annual effective dose 3.6 mSv/yr
- 0.54 mSv (~15%) from medical procedures

NCRP Report 160 (2009)

- US annual effective dose 6.2 mSv/yr
- 3.0 mSv (~48%) from medical procedures
- Largest increases from CT and nuclear medicine

Typical Dose Estimates

Radiology exam	Radiation dose (mSv)
Chest X-ray (AP)	0.02
Chest X-ray (LAT)	0.04
Lumbar spine X-ray (AP)	0.7
Mammogram (4 views)	0.7
CT Head	2.0
CT Abdomen	10.0
Coronary angioplasty	7.5-57.0

NM exam	Radiation dose (mSv)
DEXA	0.0004
Bone scan: ^{99m} Tc-MDP	4.2
Renal scan: 99mTc-MAG3	5.2
Brain perf: ^{99m} Tc-HMPAO	6.9
Cardiac MIBI: stress+rest	12.5
Gallium scan: ⁶⁷ Ga	18.5
PET/CT scan: ¹⁸ F-FDG	14-32

*these are only estimates, with limitations based on biological data and the mathematical models used

www.discovermi.org, fact sheets http://hps.org/documents/meddiagimaging.pdf

Lifetime attributable risk (BEIR VII Report 2006)

100

per

 $\cap \cap \cap \cap \cap$ ()()()()()()() \bigcirc \bigcirc **★00000000**

Figure 2. In a lifetime, approximately 42 (solid circles) of 100 people will be diagnosed with cancer² from causes unrelated to radiation. The calculations in this report suggest approximately one cancer (star) in 100 people could result from a single exposure 100 mSv of low-LET radiation.

http://dels.nas.edu/resources/static-assets/materialsbased-on-reports/reports-in-brief/beir_vii_final.pdf

RadioGraphics 2015; 35:1706–1721

Lifetime attributable risk AAPM Position statement 2018

Figure 4: Graph shows models for extrapolating radiationinduced cancer risk to low doses (dashed line and curves). Linear no-threshold (LNT) model = dashed straight line. American Association of Physicists in Medicine Position Statement:

At the present time, epidemiological evidence supporting increased cancer incidence or mortality from radiation doses below 100 mSv is inconclusive. As diagnostic imaging doses are typically much lower than 100 mSv, when such exposures are medically appropriate, the anticipated benefits to the patient are highly likely to outweigh any small potential risks.

Predictions of hypothetical cancer incidence and deaths in patient populations exposed to such low doses are highly speculative and should be discouraged. These predictions are harmful because they lead to sensationalistic articles in the public media that cause some patients and parents to refuse medical imaging procedures, placing them at substantial risk by not receiving the clinical benefits of the prescribed procedures.

https://www.aapm.org/org/policies/details.asp?id=439&type=PP

Radiology 2012; 264:312-321

SAFETY: Radiation Exposure

ALARA: as low as reasonably achievable

Use the minimum radiation dose that still allows for an accurate test

ICRP 103 (International Commission on Radiological Protection)

Questions to ask for each procedure

Is the medical exam justified?

- Will this exam provide an appropriate answer?
- Does the information already exist?

What are the risks?

• What is the benefit of having the exam vs the harm of the dose received?

Can the risks be minimized

• Can the protocol be optimized to reduce the dose?

More information

Image Wisely

https://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/How -to-Understand-and-Communicate-Radiation-Risk

~20-30 min read about radiation principles, radiobiology, risks and risk perception, and discussing radiation risk with patients.

image gently (pediatrics)

Choosing Wisely Canada

https://choosingwiselycanada.org/radiology/ https://choosingwiselycanada.org/nuclear-medicine/

